import pandas as pd
from openpyxl import load_workbook
from openpyxl.styles import PatternFill
from openpyxl.utils import range_boundaries

# Load MomentsPay_Bank_new.xlsx
moments_pay_bank_df = pd.read_excel('MomentsPayAnderson_Bank_new1.xlsx')

# Load Transaction details as on 14.12.2023
transaction_details_df = pd.read_excel('AHISintegratedPhonepe10-06.xlsx')

# Convert relevant columns to a common data type (string)
transaction_details_df['TransactionId'] = transaction_details_df['TransactionId'].astype(str).replace(r'\.0$', '', regex=True).replace(r' ','', regex=True)
transaction_details_df['Amount'] = transaction_details_df['Amount'].astype(str).replace(r'\.0$', '', regex=True)

moments_pay_bank_df['transaction_id'] = moments_pay_bank_df['transaction_id'].astype(str).replace(r'\.0$', '', regex=True)
moments_pay_bank_df['Amount'] = moments_pay_bank_df['Amount'].astype(str).replace(r'\.0$', '', regex=True)
moments_pay_bank_df['txn_identifier'] = moments_pay_bank_df['txn_identifier'].astype(str).replace(r'\.0$', '', regex=True)

# Specify the mapping between fields excluding 'processing_id' and 'transaction_id'
field_mapping = {'TransactionId': 'transaction_id','Amount':'Amount'}

# Remove time component from 'Date' and convert to datetime format
#transaction_details_df['Doc Date'] = transaction_details_df['Doc Date'].str.split().str[0]
#transaction_details_df['Doc Date'] = pd.to_datetime(transaction_details_df['Doc Date'], format='%d/%m/%Y')

# Apply the location renaming and categorization
unit_mapping = {
        'ADYAR ANDERSON':'ADYAR ANDERSON',
        'ANDERSON GUDUVANCHERI':'ANDERSON GUDUVANCHERI',
        'ANDERSON HYDERABAD':'ANDERSON HYDERABAD',
        'ANDERSON KANCHIPURAM':'ANDERSON KANCHIPURAM',
        'ANDERSON VADAPALANI':'ANDERSON VADAPALANI',
        'ANDERSON VELLORE':'ANDERSON VELLORE',
        'ANDERSON VIJAYAWADA':'ANDERSON VIJAYAWADA',
        'ANDHRA B2B CENTRE':'ANDHRA B2B CENTRE',
        'ANGAI CLINIC ADYAR':'ANGAI CLINIC ADYAR',
        'ANNANAGAR CC':'ANNANAGAR CC',
        'CHENNAI SPECIALITY CLINIC - CHOOLAIMEDU':'CHENNAI SPECIALITY CLINIC - CHOOLAIMEDU',
        'CHILD CARE HOSPITAL':'CHILD CARE HOSPITAL',
        'CHILDRENS MEDICAL CENTRE':'CHILDRENS MEDICAL CENTRE',
        'CHROMEPET MAIN CENTRE':'CHROMEPET MAIN CENTRE',
        'CLRI':'CLRI',
        'DATA CENTER':'DATA CENTER',
        'DEEN ORTHO CENTER':'DEEN ORTHO CENTER',
        'DR P MUTHUKUMAR NEUROLOGY CLINIC VALASARAVAKKAM':'DR P MUTHUKUMAR NEUROLOGY CLINIC VALASARAVAKKAM',
        'GENETICS KILPAUK':'GENETICS KILPAUK',
        'GREAMS ROAD':'GREAMS ROAD',
        'HUBLI ANDERSON':'HUBLI ANDERSON',
        'I CARE CANCER CLINIC':'I CARE CANCER CLINIC',
        'ICF ANDERSON':'ICF ANDERSON',
        'JAYA EYE CARE CENTRE':'JAYA EYE CARE CENTRE',
        'KOVAI PETCT':'KOVAI PETCT',
        'HOME COLLECTION CENTRE':'HOME COLLECTION CENTRE',
        'NAGERCOIL CENTRE':'NAGERCOIL CENTRE',
        'NANGANALLUR CENTRE':'NANGANALLUR CENTRE',
        'NELLORE':'NELLORE',
        'NIRAM HOSPITAL':'NIRAM HOSPITAL',
        'NUNGAMBAKKAM':'NUNGAMBAKKAM',
        'PDR ORTHOPAEDIC HOSPITAL':'PDR ORTHOPAEDIC HOSPITAL',
        'PERAMBUR COLLECTION POINT':'PERAMBUR COLLECTION POINT',
        'PONDICHERRY COLLECTION POINT':'PONDICHERRY COLLECTION POINT',
        'RGGH(MMC)':'RGGH(MMC)',
        'SRIRANGAM ANDERSON':'SRIRANGAM ANDERSON',
        'SRN NURO CLINIC':'SRN NURO CLINIC',
        'TAMBARAM CC':'TAMBARAM CC',
        'THANJAVUR PROCESSING CENTRE':'THANJAVUR PROCESSING CENTRE',
        'THIRUMULLAIVOYIL':'THIRUMULLAIVOYIL',
        'THIRUNELVELI PALAYAMKOTTAI':'THIRUNELVELI PALAYAMKOTTAI',
        'TIRUPATHI CC':'TIRUPATHI CC',
        'VELLORE NALAM HOSPITAL':'VELLORE NALAM HOSPITAL',
        'VILLUPURAM ANDERSON':'VILLUPURAM ANDERSON',
        'WEST MAMBALAM ANDERSON':'WEST MAMBALAM ANDERSON',
        'ANDERSON MADURAI':'ANDERSON MADURAI',
    'ANDERSON COIMBATORE':'ANDERSON COIMBATORE',
    'ANDERSON DELHI NCR':'ANDERSON DELHI NCR',
    'BANGALORE MAIN LAB - ANDERSON':'BANGALORE MAIN LAB - ANDERSON',
    'CAMP 4 ONLINE':'CAMP 4 ONLINE',
    'CHENNAI B2B CENTRE':'CHENNAI B2B CENTRE',
    'ENRICH LIFESTYLE CLINIC':'ENRICH LIFESTYLE CLINIC',
    'KARNATAKA B2B':'KARNATAKA B2B',
    'KODAMBAKKAM ANDERSON':'KODAMBAKKAM ANDERSON',
    'MUMBAI B2B CENTRE':'MUMBAI B2B CENTRE',
    'TRICHY ANDERSON':'TRICHY ANDERSON',
    'SALEM PETCT':'SALEM PETCT',
    'SUPERLIFE PHYSIO CLINIC - VEPERY':'SUPERLIFE PHYSIO CLINIC - VEPERY',
}
def normalize_whitespace(value):
    if isinstance(value, str):
        return ' '.join(value.split()).upper()  # Remove extra spaces and convert to uppercase
    return value

# Normalize TenentName in transaction_details_df
transaction_details_df['TenentName'] = transaction_details_df['TenentName'].apply(normalize_whitespace)

# Normalize keys in unit_mapping
unit_mapping = {normalize_whitespace(k): normalize_whitespace(v) for k, v in unit_mapping.items()}

# Apply normalization to mapped tenant names
transaction_details_df['TenentName'] = transaction_details_df['TenentName'].replace(unit_mapping)

# Remove duplicates from moments_pay_bank_df based on 'transaction_id'
moments_pay_bank_df_dedup = moments_pay_bank_df.drop_duplicates(subset=['transaction_id'], keep='first')

# Merge dataframes on the specified fields

merged_df = pd.merge(transaction_details_df, moments_pay_bank_df_dedup[list(field_mapping.values())],
                     left_on=list(field_mapping.keys()),
                     right_on=list(field_mapping.values()),
                     how='left')
unmerged_df = pd.merge(transaction_details_df, moments_pay_bank_df_dedup[list(field_mapping.values())],
                       left_on=list(field_mapping.keys()),
                       right_on=list(field_mapping.values()),
                       how='outer', indicator=True)

equal_records = merged_df[~merged_df['transaction_id'].isnull()]
equal_records.insert(0, 'S.No.', range(1, len(equal_records) + 1))
equal_records['momentpay matched'] = 'YES'
#equal_records['txn_identifier'] =  equal_records.apply(lambda row: moments_pay_bank_df_dedup[
#    (moments_pay_bank_df_dedup['transaction_id'] == row['TransactionId']) &
#    (moments_pay_bank_df_dedup['Amount'] == row['Amount']) ]
#    .reset_index(drop=True)['txn_identifier'].values[0], axis=1)
def get_txn_identifier(row):
    try:
        # Filter the dataframe for matching rows and select the first 'txn_identifier' value
        matched_row = moments_pay_bank_df_dedup[
            (moments_pay_bank_df_dedup['transaction_id'] == row['TransactionId']) &
            (moments_pay_bank_df_dedup['Amount'] == row['Amount'])
        ]
        if not matched_row.empty:
            return matched_row.iloc[0]['txn_identifier']
        else:
            return None  # No match found
    except Exception as e:
        print(f"Error processing row: {row}, Error: {e}")
        return None

# Apply the function to populate 'txn_identifier'
equal_records['txn_identifier'] = equal_records.apply(get_txn_identifier, axis=1)

unequal_records = unmerged_df[unmerged_df['_merge'] == 'left_only']
unequal_records.insert(0, 'S.No.', range(1, len(unequal_records) + 1))
unequal_records['momentpay matched'] = 'NO'

# Function to create or overwrite an Excel sheet
def create_or_overwrite_sheet(sheet_name, data):
    with pd.ExcelWriter('Anderson-HISBANK10-06.xlsx', mode='a', engine='openpyxl', if_sheet_exists='replace') as writer:
        data.to_excel(writer, sheet_name=sheet_name, index=False)

# Generate sheet names
sheet_name_matched = 'HISPhonepeBank-Matched'
sheet_name_unmatched = 'HISPhonepeBank-Unmatched'
create_or_overwrite_sheet(sheet_name_matched, equal_records)
create_or_overwrite_sheet(sheet_name_unmatched, unequal_records)

wb = load_workbook('Anderson-HISBANK10-06.xlsx')
Summary_Sheet = wb['Summary']

File_amount = moments_pay_bank_df['Amount'].astype(float).sum()
print(File_amount)

transaction_date = moments_pay_bank_df['TransactionDate'].mode()[0]
print(transaction_date)

settled_date = moments_pay_bank_df['SettlementDate'].mode()[0]
Summary_Sheet['A102'] = settled_date

# Update summary sheet with total transaction details
num_rows = len(transaction_details_df)
Summary_Sheet['E102'] = num_rows

total_amount = transaction_details_df['Amount'].astype(float).sum()
Summary_Sheet['F102'] = f"₹{total_amount:,.2f}"

# Update summary sheet with matched transaction details
HIS_Matched_df = pd.read_excel('Anderson-HISBANK10-06.xlsx', sheet_name='HISPhonepeBank-Matched')
num_rows = len(HIS_Matched_df)
Summary_Sheet['G102'] = num_rows

total_amount = HIS_Matched_df['Amount'].astype(float).sum()
Summary_Sheet['H102'] = f"₹{total_amount:,.2f}"

# Update summary sheet with unmatched transaction details
HIS_UnMatched_df = pd.read_excel('Anderson-HISBANK10-06.xlsx', sheet_name='HISPhonepeBank-Unmatched')
num_rows = len(HIS_UnMatched_df)
Summary_Sheet['I102'] = num_rows

total_amount = HIS_UnMatched_df['Amount'].astype(float).sum()
Summary_Sheet['J102'] = f"₹{total_amount:,.2f}"

# Define the color for the header
header_fill = PatternFill(fgColor='1274bd', fill_type='solid')

for sheet_name in ['HISPhonepeBank-Matched', 'HISPhonepeBank-Unmatched']:
    worksheet = wb[sheet_name]

    # Apply style to the header row
    for row in worksheet.iter_rows(min_row=1, max_row=1):
        for cell in row:
            cell.fill = header_fill

# Save the workbook
wb.save('Anderson-HISBANK10-06.xlsx')

# Combine the matched and unmatched DataFrames to calculate total counts and amounts
combined_df = pd.concat([HIS_Matched_df, HIS_UnMatched_df], ignore_index=True)

# Define the column name for unit/location and total amount
unit_location_col = 'TenentName'
total_amount_col = 'Amount'

# Calculate total count and total amount for each unique location
total_grouped = combined_df.groupby(unit_location_col).agg(
    total_count=pd.NamedAgg(column=unit_location_col, aggfunc='count'),
    total_amount=pd.NamedAgg(column=total_amount_col, aggfunc='sum')
).reset_index()

# Calculate matched count and matched total amount for each unique location
matched_grouped = HIS_Matched_df.groupby(unit_location_col).agg(
    matched_count=pd.NamedAgg(column=unit_location_col, aggfunc='count'),
    matched_amount=pd.NamedAgg(column=total_amount_col, aggfunc='sum')
).reset_index()

# Calculate unmatched count and unmatched total amount for each unique location
unmatched_grouped = HIS_UnMatched_df.groupby(unit_location_col).agg(
    unmatched_count=pd.NamedAgg(column=unit_location_col, aggfunc='count'),
    unmatched_amount=pd.NamedAgg(column=total_amount_col, aggfunc='sum')
).reset_index()

# Create a dataframe for all the locations from unit_mapping with default 0 values
location_df = pd.DataFrame(list(unit_mapping.items()), columns=[unit_location_col, 'dummy'])
location_df['total_count'] = 0
location_df['total_amount'] = 0.0
location_df['matched_count'] = 0
location_df['matched_amount'] = 0.0
location_df['unmatched_count'] = 0
location_df['unmatched_amount'] = 0.0

# Merge the grouped data with the location_df to ensure all locations from unit_mapping are included
summary_df = total_grouped.merge(matched_grouped, on=unit_location_col, how='left')\
                              .merge(unmatched_grouped, on=unit_location_col, how='left')

# Merge with location_df to ensure all unit_mapping locations are included, even with 0 values
summary_df = summary_df.merge(location_df, on=unit_location_col, how='right', suffixes=('_data', '_mapped'))

# Fill NaN values with 0 (in case there are locations that are only in unit_mapping and not in the data)
summary_df['total_count'] = summary_df['total_count_data'].fillna(0).astype(int)
summary_df['total_amount'] = summary_df['total_amount_data'].fillna(0.0)
summary_df['matched_count'] = summary_df['matched_count_data'].fillna(0).astype(int)
summary_df['matched_amount'] = summary_df['matched_amount_data'].fillna(0.0)
summary_df['unmatched_count'] = summary_df['unmatched_count_data'].fillna(0).astype(int)
summary_df['unmatched_amount'] = summary_df['unmatched_amount_data'].fillna(0.0)

# Drop unnecessary columns
summary_df.drop(columns=[col for col in summary_df.columns if col.endswith('_data')], inplace=True)

# Reorder the columns
summary_df = summary_df[['TenentName', 'total_count', 'total_amount', 'matched_count', 'matched_amount', 'unmatched_count', 'unmatched_amount']]

# Load the summary sheet where you want to update the values
summary_sheet_path = 'Anderson-HISBANK10-06.xlsx'
book = load_workbook(summary_sheet_path)
summary_sheet = book['Summary']

# Define the starting row and column for updating the Summary sheet
start_row = 103  
start_col = 4

# Function to find the top-left cell of a merged cell range
def find_top_left_cell(merged_ranges, row, col):
    for merged_range in merged_ranges:
        min_col, min_row, max_col, max_row = range_boundaries(str(merged_range))
        if min_row <= row <= max_row and min_col <= col <= max_col:
            return min_row, min_col
    return row, col

# Update the Summary sheet with the new summary data
merged_ranges = summary_sheet.merged_cells.ranges
for index, row in summary_df.iterrows():
    for col_num, value in enumerate(row):
        # Find the top-left cell if the cell is part of a merged range
        r, c = find_top_left_cell(merged_ranges, start_row + index, start_col + col_num)
        # Write the value to the correct cell
        summary_sheet.cell(row=r, column=c, value=value)

# Save the workbook without deleting existing sheets
book.save(summary_sheet_path)

print(summary_df)

